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This paper deals with a generalization of a classical result obtained by R. Beals 
and V. Protopopescu for the Fokker-Planck equations to the case in which a 
constant external force is present. 

KEY WORDS: Fokker-Planck equation; Brownian motion; half-range com- 
pleteness; linear transport theory; indefinite Sturm-Liouville problems; kinetic 
layers; boundary value problems. 

1. I N T R O D U C T I O N  

Some years ago, Beals and Protopopescu (1) proved a half-range complete- 
ness theorem for the linear, stationary, one-dimensional Fokker-Planck 
equation (FPE). In fact, they proved that half of the eigenfunctions 
computed by Pagani (3) corresponding to a positive velocity argument is 
complete on the real positive half-axis (the same is true for negative 
arguments on the negative half-axis). 

We generalize that result to the case in which the FPE also contains 
a term representing the action of a constant external force on the particles 
of the system described by the equation. Interest in this problem has grown 
in connection with the study of evaporation phenomena: Burschka and 
Titulaer (7l attacked the problem of determining the distribution function 
for a Brownian particle in the one-particle phase space in connection with 
the kinetic boundary layer solution of the FPE; refs. 5 and 6 examine the 
problem of the growth of small droplets, by using the Ktein-Kramers equa- 
tion. In a different context, ref. 13 studies the half-range expansion problem 
for the FPE. In refs. 8 and 9 the problem of calculating the first passage 
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time for the Ornstein-Uhlenbeck process is studied, while Marshall and 
Watson obtained (2) the explicit analytic form of the corresponding eigen- 
functions, without proving the completeness of the system, in order to 
obtain the analytic solution of some boundary layer problems. In assuming 
the completeness of the system of eigenfunctions, they say "The corre- 
sponding result for ~ = 0 has been proved and we think it is only a matter 
of time to extend the proof to our case." We want to accomplish this task 
n o w .  

The plan of the work is the following: in the next section the problem 
is introduced together with the proper setting of function spaces; then we 
recall some previous results on indefinite Sturm-Liouville problems, while 
in the final section we deal with the half-range completeness property of the 
corresponding eigenfunctions by applying a theorem proved by Beals. (4) 

2. STATEMENT OF THE PROBLEM 

We study the following equation: 

c~ 4, ( k T c3 2 0 v) 
~x(X,~)= ~m0---~+~N 4,(x,~)+ 

4, = 4,(x, v), v ~ R ,  x e R  + 

04, 
- -  ( 1 )  gv 

i.e., the one-dimensional linear stationary Fokker-Planck equation, which 
describes the steady one-dimensional Brownian motion of a classical 
particle of mass m in an isotropic fluid in thermal equilibrium at the 
temperature T, on which also acts an external conservative force. (11'12) 

In Eq. (1) the range of the velocity is R, while the position x is 
restricted to the right half-axis; without any loss of generality we can take 
the "friction coefficient" 7 = 1 and also kT /m = 1 by a suitable choice of the 
units. At the wall x - - 0  we can impose the following boundary condition: 

0(0, v) = 4,o(V) (given), v > 0 (2) 

We shall restrict our discussion to the case c~ > 0, because we cannot expect 
a regular behavior at oo when ~ < 0, i.e., when the particles have an 
acceleration driving them toward infinity. 

We remark that there are essentially two kinds of possible behaviors 
at o% according to whether there is a net flow of particles through the wall 
or not. Here we restrict our discussion to the case when the net flow 
vanishes at oo. This is, e.g., the case of particles suspended in the atmo- 
sphere under the action of gravity. 
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In this case we expect an equilibrium solution of the form (Maxwell- 
Boltzmann distribution in a force field) 

Ceq(X, V) = C exp -- ~--- ~x (3) 

This is the form of the solution that should prevail outside the kinetic 
layers. 

It would be tempting to write r v) = r v) ~b(x, v) and look for 
~b(x, v). This, however, does not turn out to be the most convenient choice. 

Let us introduce the new unknown q~(x,v) related to ~b by the 
following relation: 

r  4 2 ( x + v )  ~b(x,v) (4) 

The equation for ~b now is 

VOx_ v ~ -~+-y -~ /~ (x , v )  (5) 

which can be written in the following operational form: 

M 
r ~ x  x = -A~b (6) 

where 

(Tf)(x,  v) = vf(x, v) (7) 

and 

Since we want r to behave as Ceq defined by Eq. (3) when x ~ 0% we have 
the following boundary conditions for ~b: 

~b(0, v) = ~bo(V) (given), v > 0 (9) 

lira ~b(x, v) = C exp 4 2 ( x -  v) ( C =  const) (10) 
x ~ o O  

Let us introduce the following Hilbert spaces: 

H =  LZ(R; dr), g r  = L2(R; Ivl dr) 
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together with the scalar products and corresponding norms: 

(u, v) = f u(v) z(v) dr, 1lull = (u, /j) 1/2 (11) 

(u, z)T= f u(v) z(v) Iv[ &, Iqull T = (/X, U)IT/2 (12) 

Equation (5) together with the boundary conditions (9) is an indefinite 
Sturm-Liouville problem. We want to show that it can be solved by a 
suitable application of a theorem established by Beals (4) and extensively 
applied to this kind of problems. To this end, we have to introduce some 
additional notation. The theory developed by Beals that we recall briefly in 
the next section, and a systematic exposition of which is contained in 
ref. 10, allows one to deal with more general equations of the form 

8 [p(p) O~b t t ) l _ q ( g ) ~ ( x , #  ) w(#) ~x (x,/~) = ~--fi~ ~-fi(x, (13) 

[-where # ranges over an open subset I of the real line, and the real-valued 
function w(#) (the weight) changes sign on I], endowed with forward- 
backward spatial boundary conditions in half-space geometry: 

~(0,/~) = ~b + (#) for those # where w(#) > 0 (14a) 

I[~(x,t~)ll=O(1) or o(1) x- -*~  (14b) 

Let us introduce the orthogonal projections Q+ and Q_ of H onto 
maximal T-positive and T-negative T-invariant subspaces: 

~h(#), p E I_+ 
(Q-+ h)(#) = (0, /~eI+ 

where I+ = { # e l :  _+w(#)>0}. 
We can write (14a) in the following form: 

Q + tp(o) = ~ + 

3. P R E V I O U S  RESULTS ON INDEFIN ITE S T U R M - L I O U V I L L E  
P R O B L E M S  

If we perform a formal separation of variables of the kind ~O(x, # )=  
exp( -2x)  y(p), we obtain the Sturm-Liouville boundary value problem: 

- [ ( p y ' ) ' -  qy] = 2wy (15) 
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with the same boundary conditions (self-adjoint). The theorem proved by 
Beals (4) requires the following preliminary hypotheses: 

I. I_ v_ = {/~ e I such that + w ( # ) >  0} are nonempty finite unions of 
open intervals, and the set Io = {/~ e I: w(#)=  0} has finite cardinality. 

II. The function w(kt) is continuous on I+ w I  . 

III. In a neighborhood of each sign change ktoeI of the weight 
function w(#) there exists a Cl-function m satisfying w(/~)= 
sign(# - #o)(# -- #o) ~ m(p) with ~ > - 1 / 2  and m(#) r O. 

IV. The function p: I ~ R  is locally absolutely continuous and 
strictly positive on I; the function q: I--* R is continuous on L 

Furthermore, let us denote by D~ the linear subspace of functions 
h e H that are absolutely continuous on I and whose derivatives h' satisfy 
p [h~12eLl(1, d#) and q [h[2eLl(I, dp) and define the following sesqui- 
linear form: 

(h, g)A=f p(~t)h'(~)~,'(~t)d#+ f q(#)h(~)~,(l~)dt~ (16) 

g. 

to No in 

VI. 

VII. 

VIII. 
No in H. 

The existence of a linear subspace D cDI is assumed containing the 
compactly supported C~-functions on I and of a finite-dimensional 
subspace No c D with the following properties: 

(wh, wh)<~ c(h, h)A for some constant c and all h ~ D orthogonal 
H. 

(h, h)A ~O for all h~ D. 
(h, h)A = 0 for all h e No. 

IlhH 2< c(h, h)A for some constant c and all h ~ D orthogonal to 

The definition of the domain of the operator A requires some care. Let 
us define on D the inner product 

(h, g)l  = (h, g)A + (h, g) (17) 

and denote by H A the completion of D with respect to this inner product; 
since N o is of finite dimension and we assumed hypothesis VIII, H A is 
continuously and densely imbedded in H. Let H i  be the dual of HA with 
respect to H. If we extend the inner product (17) to H A, we may realize an 
operator A o from H A into H i by (Aoh, g ) =  (h, gA) for h, g~ HA. We now 
define D ( A ) =  {h~HA: Aoh~H } with A = A  o on D(A). 

We have also to require some compactness assumption, i.e., that the 
multiplication by w(p) defines a continuous mapping from H A to H;  in the 
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case in which A has compact resolvent, the inclusion H ~ H i  is compact 
and in this case compactness follows directly from the continuity of the 
map from HA to H. (4'1~ 

It is also possible to prove that the operator T-1A with domain 
D = {h e D(A): Ah ~ T[HA] } is closed with respect to the HA-topology. (1~ 
The main steps in obtaining Beals' theorem are an adaptation of a lemma 
proved by Baouendi and Grisvard, (15/ already utilized by Beals and 
Protopopescu, (1) and a theorem which states the equivalence between the 
scalar products (o, o), and (o, ~ We recall both the lemma and the 
theorem of equivalence: 

k e m m a  1. There exist bounded linear operators X and Y* on H A 
satisfying 

XQ+ =Q+, ITI X= Y*T 

o n  HA, with Y* the adjoint of Y in H. 

T h e o r e m  2. The inner products (o, ~ and (o, ~ are equivalent 
on H A and therefore H r ~-H s. 

We remark that a proof of this theorem alternative to that of Beals 
was given by Curgus, (14) who showed that the identification Hr~_Hs is 
equivalent to infinity being a regular critical point of S in a suitable 
indefinite inner product on Hr. Finally we recall the fundamental theorem 
by Beals, (4~ which is the main tool of this work: 

Theorem 3. Under the assumptions listed above, there is a 
sequence of eigenfunctions {un} with eigenvalues {2n} which is a basis for 
L2(I+wI  ; Iw(#)ld/0. I f d i m k e r A = 0 ,  then {u+; 2n>0}  is abas i s  for 
L2(I+ ;w(#)d/~) and {u~-; 2 n <0}  is a basis for L2(I_ ; W(l~)dl~). 

In the same paper Beals showed also that if dim kerA =span{uo} 
under the same assumptions as before, u o must be included with {u+; 
4 , > 0 }  to obtain a basis for L2(I+ ; w(/~)d#) if and only if 

f w(u) Uo(U) du>~0 (~s) 

and this was an essential step in proving the completeness theorem for the 
FPE in the case without external force. 

4. H A L F - R A N G E  C O M P L E T E N E S S  

In order to apply Beals' result on indefinite Sturm-Liouville problems, 
we recall the following, well-known result. 
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L e m m a  4. The operator A defined by (8) is positive definite in 
H = L2(R; dr). 

It is easy now to check that our problem is in the range of validity of 
Beals' theorem and that all the assumptions listed in the previous section 
are satisfied; all this can be done in strict analogy with the case ~ = 0. In 
particular, it is straightforward to verify that multiplication by v (the 
weight function w in our case) defines a continuous mapping from H to 
HA, while the compactness of the mapping from H A to H i  follows by the 
compactness of the resolvent of A. 

Let us examine the spectrum of A in some detail; the eigenvalue 
equation for the operator A can be written in the form 

632g q_ (~ V2 ~2 fi2) 
~ v  2 4 4 + -2- g = 0 (19) 

This is essentially the well-known Weber equation, ~2'3) whose solutions are 
the so-called parabolic cylinder functions. In correspondence with every 
eigenvalue 

there is an eigenfunction of the kind 

u,,(v) = c , D , ( 2 q n  - v) (21) 

with 

q, = (n - 0{2 )  U'2 (22) 

The role of these eigenfunctions in the eigenvalue problem A u - - 2 T u  was 
pointed out by Marshall and Watson, (2) generalizing the result contained 
in a paper by Pagani (3) in the case where the term of the external body 
force is missing. It is immediate to see that the resolvent is compact and 
that the main difference from the case with c~ = 0 is the absence of the null 
eigenvalue (the operator A is positive definite), which makes the problem 
is some respects easier to treat than the previous one. In conclusion, we can 
state the following result. 

Theorem 5. The set of eigenfunctions un given by (28) is complete 
in the Hilbert space H and the solution of Eq. (1) with boundary condi- 
tions (2) and (3) can be expanded in series of such eigenfunctions. 
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